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Abstract

For a non-empty graph G, let λ(G) be the smallest number of vertices that can
be deleted from G so that the maximum degree of the resulting graph is smaller
than the maximum degree ∆(G) of G. If G is regular, then λ(G) is the domination
number γ(G) of G. We show that if 1 ≤ k < r and c is a real number such that
γ(H) ≤ c|V (H)| for every connected k-regular graph H with |V (H)| ≥ r, then
λ(G) ≤ c|V (G)| for every connected graph G with ∆(G) = k and |V (G)| ≥ r. We
in fact show that

λ(G) ≤ γ(H)

|V (H)|
|V (G)|

for an H explicitly constructed from G. Several bounds on λ(G) follow. Various
problems motivated by the result are posed, and related results are obtained.

We also provide a sharp bound on λ(G) that depends only on the vertices of
largest degree. We call a vertex of largest degree a ∆-vertex. We call a ∆-vertex v
solitary if no other ∆-vertex is of distance at most 2 from v. Let S(G) be the set
of solitary ∆-vertices, and let T (G) be the set of non-solitary ∆-vertices. We show
that

λ(G) ≤ |S(G)|+ ∆(G)

∆(G) + 1
|T (G)|.

The bound can be attained with T (G) 6= ∅.

1 Introduction
Unless stated otherwise, we use small letters such as x to denote non-negative integers
or elements of sets, and capital letters such as X to denote sets or graphs. The set
of positive integers is denoted by N. For n ≥ 1, [n] denotes the set {1, . . . , n} (that
is, [n] = {i ∈ N : i ≤ n}). We take [0] to be the empty set ∅. Arbitrary sets are
assumed to be finite. For a set X,

(
X
2

)
denotes the set of 2-element subsets of X (that

is,
(
X
2

)
= {{x, y} : x, y ∈ X, x 6= y}).
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If Y is a subset of
(
X
2

)
and G is the pair (X, Y ), then G is called a graph, X is called

the vertex set of G and denoted by V (G), and Y is called the edge set of G and denoted
by E(G). Arbitary graphs are assumed to have non-empty vertex sets. A vertex of G
is an element of V (G), and an edge of G is an element of E(G). We call G an n-vertex
graph if |V (G)| = n. We may represent an edge {v, w} by vw. If vw ∈ E(G), then we
say that w is a neighbour of v in G (and vice-versa). For v ∈ V (G), NG(v) denotes the
set of neighbours of v in G, NG[v] denotes NG(v) ∪ {v}, and dG(v) denotes |NG(v)| and
is called the degree of v in G. The minimum degree of G is min{dG(v) : v ∈ V (G)} and
is denoted by δ(G). The maximum degree of G is max{dG(v) : v ∈ V (G)} and is denoted
by ∆(G). If v ∈ V (G) and dG(v) = ∆(G), then we call v a max-degree vertex of G or a
∆-vertex of G. The set of ∆-vertices of G is denoted by M(G). For X ⊆ V (G), NG[X]
denotes

⋃
v∈X NG[v] (the closed neighbourhood of X), G[X] denotes (X,E(G)∩

(
X
2

)
) (the

subgraph of G induced by X), and G − X denotes G[V (G)\X] (the graph obtained by
deleting X from G).

A copy of a graph H is a graph obtained by relabeling the vertices of H. More
formally, if φ : V (H) → V (G) is a bijection and E(G) = {φ(v)φ(w) : vw ∈ E(H)}, then
G is said to be a copy of H or isomorphic to H, and we write G ' H.

For n ≥ 1, the graphs ([n],
(

[n]
2

)
) and ([n], {{i, i + 1} : i ∈ [n − 1]}) are denoted by

Kn and Pn, respectively. For n ≥ 3, Cn denotes the graph ([n], {{1, 2}, {2, 3}, . . . , {n −
1, n}, {n, 1}}) (= ([n], E(Pn)∪ {n, 1})). A copy of Kn is called a complete graph. A copy
of Pn is called an n-path or simply a path. A copy of Cn is called an n-cycle or simply a
cycle. A graph G is called k-regular, or simply regular, if dG(v) = k for each v ∈ V (G).

If G and H are graphs such that V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is called
a subgraph of G, and we say that G contains H.

If G,G1, . . . , Gt are graphs such that V (G) =
⋃t
i=1 V (Gi) and E(G) =

⋃t
i=1E(Gi),

then G is the union of G1, . . . , Gt. If V (Gi)∩V (Gj) = ∅ for every i, j ∈ [t] with i 6= j, then
G1, . . . , Gt are pairwise vertex-disjoint. A graph G is connected if, for every v, w ∈ V (G),
G contains a path P with v, w ∈ V (P ). A connected subgraph H of G is a component
of G if, for each connected subgraph K of G with K 6= H, H is not a subgraph of K.
Clearly, any two distinct components of G are pairwise vertex-disjoint.

We call a subset D of V (G) a ∆-reducing set of G if no vertex of G −D has degree
∆(G), that is, if ∆(G − D) < ∆(G) or ∆(G) = 0 and D = V (G). Note that D is a
∆-reducing set of G if and only if M(G) ⊆ NG[D]. Let λ(G) denote the size of a smallest
∆-reducing set of G. We call λ(G) the ∆-reducing number of G.

For X,D ⊆ V (G), we say that D dominates X in G if X ⊆ NG[D]. Thus, D
dominates X if and only if, for each v ∈ X, v is in D or has at least one neighbour
in D. Note that D dominates M(G) in G if and only if D is a ∆-reducing set of G.
Thus, λ(G) = min{|D| : D dominates M(G) in G}. A dominating set of G is a set that
dominates V (G) in G. The size of a smallest dominating set of G is called the domination
number of G and denoted by γ(G). Thus, the problem of minimizing the size of a ∆-
reducing set is a variant of the classical domination problem [3, 5, 9, 10, 11, 12]; the
aim is to use as few vertices as possible to dominate the vertices of maximum degree
rather than all the vertices. Many other variants have been studied (see, for example,
[4, 6, 8, 13, 14]); many of the earliest ones are referenced in [12], but nowadays there are
several others. If G is k-regular, then our problem is the same as the classical one, that
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is, λ(G) = γ(G).
The parameter λ(G) was introduced and studied in [1], and the extremal structures

for bounds in [1] were determined in [2]. An application is indicated in [25]. In this
paper, we provide new upper bounds on λ(G), establishing, in particular, connections
with domination numbers of regular graphs.

2 Results
For v ∈ V (G), we denote NG[NG[v]] (the set of vertices of G of distance at most 2 from
v) by N (2)

G [v], and we denote N (2)
G [v]\{v} by N (2)

G (v). We call a ∆-vertex v of G solitary
if N (2)

G (v)∩M(G) = ∅. Let S(G) denote the set of solitary ∆-vertices of G, and let T (G)
denote M(G)\S(G) (the set of non-solitary ∆-vertices of G).

The following is our first main result, proved in Section 3.

Theorem 1 For any graph G,

λ(G) ≤ |S(G)|+ ∆(G)

∆(G) + 1
|T (G)|.

Moreover, for k ≥ 0, the bound is attained by infinitely many non-isomorphic connected
graphs G with ∆(G) = k and T (G) 6= ∅ if and only if k ≥ 3.

The bound was conjectured by Yair Caro, Kurt Fenech, and the author (see [7]). If
∆(G) = 0, then T (G) = ∅. If G is a connected graph with ∆(G) = 1, then G ' K2,
T (G) = V (G), and the bound is attained. Since λ(G) is an integer, Theorem 1 gives
us λ(G) ≤ |S(G)| +

⌊ ∆(G)
∆(G)+1

|T (G)|
⌋
. Clearly, the cycles and the paths with at least 3

vertices are the only connected graphs with maximum degree 2, and, for n ≥ 3, we have
λ(Pn) =

⌊
n
3

⌋
(clearly, {3i : 1 ≤ 3i ≤ n} is a smallest ∆-reducing set of Pn) and λ(Cn) =

γ(Cn) =
⌈
n
3

⌉
(clearly, {1 + 3i : 1 ≤ 1 + 3i ≤ n} is a smallest dominating set of Cn). Thus,

for a connected graph G with ∆(G) = 2 and T (G) 6= ∅, λ(G) = |S(G)|+
⌊ ∆(G)

∆(G)+1
|T (G)|

⌋
if and only if G is a 4-path or a 6-path or a 4-cycle.

We next study the relationship between ∆-reducing numbers and domination num-
bers. By definition, λ(G) ≤ γ(G), and if G is regular, then λ(G) = γ(G). Our aim is
to bound from above the ratio λ(G)/|V (G)| by cR = max{γ(H)/|V (H)| : H ∈ R} for
some set R of ∆(G)-regular graphs, where R is as small as possible so that cR is as small
as possible. We show that this is achieved in particular by taking R to be the set of
∆(G)-regular pn-vertex graphs with p = 2

⌈∆(G)−δ(G)+1
2

⌉
and n = |V (G)|. Moreover, from

G, we explicitly construct a ∆(G)-regular graph H such that

λ(G) ≤ γ(H)

|V (H)|
|V (G)| (1)

and that, if G is connected, then H is connected. If G is regular, then we take H = G
(and the result is immediate). If G is not regular, then H is a pn-vertex graph (see
Construction 1 and Lemmas 1 and 2).
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If α(n, k) is a real number defined for some n, k ∈ N, then let

α′(n, k) =
α(n, k)

n
.

If G is a k-regular n-vertex graph, then kn is even by the handshaking lemma
(
∑

v∈V (G) dG(v) = 2|E(G)|). Consider any two integers n and k such that 2 ≤ k < n
and kn is even. The graph Bn,k in Section 4 is a connected k-regular n-vertex graph.
Let f(n, k) be the smallest rational number c such that the domination number of every
connected k-regular n-vertex graph is at most cn. Thus, 0 < f(n, k) < 1. Let

γcr(n, k) = max{γ(G) : G is a connected k-regular graph with V (G) = [n]}

(the subscript ‘cr’ refers to connected regular graphs). Thus,

f(n, k) = γcr
′(n, k).

Together with (1), the following is our second main result, proved in Section 4; part
(i) follows immediately from (1).

Theorem 2 (i) If G is a connected non-regular n-vertex graph with maximum degree
k ≥ 2 and minimum degree `, then

λ(G) ≤ f

(
2

⌈
k − `+ 1

2

⌉
n, k

)
n.

(ii) If, moreover,
∑

v∈V (G) dG(v) 6= kn− 1, then, for any even integer p > k − `,

λ(G) ≤ f(pn, k)n.

Remark 1 (i) If G is connected and k-regular, then λ(G) = γ(G) ≤ f(n, k)n.

(ii) Theorem 2 may not hold if G is regular. Indeed, if G = Cn with n = 3t + 1 for
some t ≥ 1, then ` = k = 2, 2

⌈
k−`+1

2

⌉
= 2, and, for any even p > 0, λ(G) = γ(G) =

1 + t > 1+pt+b(p−1)/3c
p

= γ(Cpn)

p
= γ(Cpn)

pn
n = f(pn, 2)n as every connected 2-regular graph

is a cycle.

(iii) The integer 2
⌈
k−`+1

2

⌉
is the smallest even p > k − `.

(iv) The bounds in Theorem 2 are attained if G = Pn with n = 3t for some t ≥ 1.
Indeed, in such a case, we have ` = 1, k = 2, 2

⌈
k−`+1

2

⌉
= 2, and, for any even p > 0,

λ(G) = t = γ(Cpn)

pn
n = f(pn, 2)n.

One of the questions we pose in Section 5 is whether the bound on λ(G) in Theorem 2
(ii) also holds when

∑
v∈V (G) dG(v) = kn−1 (see Problem 2). We conjecture an affirmative

answer (Conjecture 1) and make some observations regarding this case.
We now turn our attention to the desired consequences of Theorem 2. We show how

Theorem 2 combines with known domination results to give us explicit values that bound
λ(G) from above. We start with our main consequence of Theorem 2.
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Theorem 3 If 1 ≤ k < r and c is a real number such that γ(H) ≤ c|V (H)| for every
connected k-regular graph H with |V (H)| ≥ r, then λ(G) ≤ c|V (G)| for every connected
graph G with ∆(G) = k and |V (G)| ≥ r.

Proof. Let ` = δ(G). Since G is connected, ` ≥ 1. If G is k-regular, then λ(G) =
γ(G) ≤ c|V (G)|. Suppose that G is not k-regular. Then, ` < k, and hence k ≥ 2.
Let n = |V (G)|. Let p = 2

⌈
k−`+1

2

⌉
. Since p > k − ` ≥ 1 and n ≥ r, pn > r. Thus,

γcr(pn, k) ≤ c(pn). By Theorem 2 (i), λ(G) ≤ γcr(pn,k)
pn

n ≤ cn. 2

We call a connected graph G exceptional if δ(G) = 2 and γ(G) > 2
5
|V (G)|. The

exceptional graphs were determined in [20]; they number to 7 (up to isomorphism). The
efforts of several authors established that if k ≥ 1 and G is a connected n-vertex graph
with δ(G) ≥ k, then, unless k = 2 and G is exceptional,

γ(G) ≤ k

3k − 1
n. (2)

The cases k = 1, k = 2, and k = 3 were proved by Ore [21], McCuaig and Shepherd [20],
and Reed [22], respectively. Caro and Roditty obtained γ(G) ≤

(
1− k

k+1

(
1

k+1

)1/k
)
n

(see [9]), which is better than (2) for k ≥ 7. It was then conjectured in [9] that (2) also
holds for the remaining cases k = 4, k = 5, and k = 6, which were eventually settled in
[23], [24], and [15], respectively. Of the 7 exceptional graphs (see [20, 9]), only C4 and C7

are regular. Using these facts, we obtain the following.

Theorem 4 If G is a connected n-vertex graph with maximum degree k, then, unless G
is a copy of C4 or of C7,

λ(G) ≤ min

{
k

3k − 1
, 1− k

k + 1
µ1/k

}
n,

where µ = min
{

1, n
(k+1)|M(G)|

}
.

Proof. If either k 6= 2, or k = 2 and n ≥ 8, then λ(G) ≤ k
3k−1

n by (2) and Theorem 3.
Clearly, the paths and the cycles are the only connected graphs with maximum degree
at most 2. Thus, it is easy to check that if k = 2 and n ≤ 7, then λ(G) ≤ 2

5
n = k

3k−1
n

unless G is a copy of C4 or of C7. Let t = |M(G)|. Since M(G) is a ∆-reducing set of G,
λ(G) ≤ t. If t ≤ n

k+1
, then µ = 1 and λ(G) ≤ n

k+1
=
(
1 − k

k+1
µ1/k

)
n. Suppose t ≥ n

k+1
.

Then, µ = n
(k+1)t

. It is shown in [1, Proof of Theorem 2.7] that λ(G) ≤ nρ+t(1−ρ)k+1 for
any real number ρ satisfying 0 ≤ ρ ≤ 1. Using differentiation, we find that the minimum
value of nρ + t(1 − ρ)k+1 is attained when ρ = 1 −

(
n

(k+1)t

)1/k (note that this satisfies
0 ≤ ρ ≤ 1 as t ≥ n

k+1
), so the minimum value is

(
1− k

k+1
µ1/k

)
n. 2

Note that the bound
(
1− k

k+1
µ1/k

)
n on λ(G) is at most the Caro–Roditty bound on

γ(G), so it is better than the bound k
3k−1

n on λ(G) for k ≥ 7.
Improving a bound in [18], Kostochka and Stocker [19] proved that if n ≥ 9 and G is

a connected 3-regular n-vertex graph, then γ(G) ≤ 5
14
n. Thus, by Theorem 3 with k = 3

and r = 9, we immediately obtain the following generalization.
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Theorem 5 If n ≥ 9 and G is a connected n-vertex graph with maximum degree 3, then

λ(G) ≤ 5

14
n.

A result similar to Theorem 2 holds if we drop the condition that G is connected.
For 1 ≤ k < n with kn even, let g(n, k) be the smallest rational number c such that the
domination number of every k-regular n-vertex graph is at most cn, and let

γr(n, k) = max{γ(G) : G is a k-regular graph with V (G) = [n]}.

Thus,
g(n, k) = γr

′(n, k).

In Section 4, we show that the proof of Theorem 2 also yields the following.

Theorem 6 If G is an n-vertex graph with maximum degree k and minimum degree `,
then, for any even integer p > k − `,

λ(G) ≤ g(pn, k)n.

Remark 2 (i) If G is k-regular, then λ(G) = γ(G) ≤ g(n, k)n.

(ii) The bound in Theorem 6 is attained if n = 4t + 3 for some t ≥ 0, G is an n-vertex
graph that is the union of t 4-cycles and a 3-path (so G is non-regular), and p = 2.
Indeed, let H be a 2n-vertex graph that is the union of 2t 4-cycles and two 3-cycles. We
have that ∆(G) = 2, δ(G) = 1, H is 2-regular, and γ(H) = 4t + 2 = 2λ(G). Let H ′
be a 2-regular 2n-vertex graph. Since 2n = 4(2t + 1) + 2, at least one component of
H ′ is not a 4-cycle. Note that γ(C) =

⌈ |V (C)|
3

⌉
≤ |V (C)|

2
− 1

2
for any cycle C 6' C4, and

that γ(C4) = 2 = |V (C4)|
2

. Since every 2-regular graph is a cycle or the union of pairwise
vertex-disjoint cycles, it follows that γ(H ′) ≤ |V (H′)|

2
− 1

2
= 4t+ 3− 1

2
, so γ(H ′) ≤ 4t+ 2.

Therefore, γr(2n, 2) = γ(H) = 4t+ 2, and hence λ(G) = g(2n, 2)n.

(iii) The bound may be attained if G is regular. This occurs if, in (ii), the 3-path is
replaced by a 3-cycle. We also give an example for k = 3. Suppose that G is the union
of s ≥ 1 pairwise vertex-disjoint copies of the graph C ′8 below. Then, G is 3-regular
and λ(G) = γ(G) = 3s = 3

8
n. By (3) (below), for any even p > 0, g(pn, 3) = 3

8
, so

λ(G) = g(pn, 3)n.

The next result follows from Theorem 6 similarly to the way Theorem 3 follows from
Theorem 2.

Theorem 7 If 0 ≤ k < r and c is a real number such that γ(H) ≤ c|V (H)| for every k-
regular graph H with |V (H)| ≥ r, then λ(G) ≤ c|V (G)| for every graph G with ∆(G) = k
and |V (G)| ≥ r.

However, if G1, . . . , Gt are the components of a graph G, and τ(G) is λ(G) or γ(G),
then τ(G) =

∑t
i=1 τ(Gi), so, to a large extent, we only need to consider connected

graphs. Moreover, the value of f(n, k) is obviously either the same as that of g(n, k) or
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better than it, that is, f(n, k) ≤ g(n, k). There are infinitely many integers n for which
f(n, 3) < g(n, 3). In particular,

if n = 8t for some t ≥ 2, then f(n, 3) ≤ 5
14
< 3

8
= g(n, 3). (3)

Indeed, we have the following. By the above-mentioned Kostochka–Stocker (KS) bound,
f(n, 3) ≤ 5

14
. Now it is well-known that there exist 3-regular 8-vertex graphs whose

domination number is 3; the graph C ′8 with V (C ′8) = V (C8) = [8] and E(C ′8) = E(C8) ∪
{{1, 5}, {2, 6}, {3, 7}, {4, 8}} is an example. If G is the union of t pairwise vertex-disjoint
copies of C ′8, then G is 3-regular and γ(G) = 3t = 3

8
n. By (2) with k = 3 (due to Reed

[22]), we obtain the equality g(n, 3) = 3
8
in (3). Not much more than the results above is

known about the values f(n, k) and g(n, k).
If X is a set, a and b are functions with domain X, a(x) ≤ b(x) for every x ∈ X (or

a(x) ≥ b(x) for every x ∈ X), X has an infinite subset Y such that a(x) = b(x) for every
x ∈ Y , and either Y is a set of non-isomorphic graphs or Y is not a set of graphs, then
we will say that the bound b on a is infinitely attainable.

Establishing infinitely attainable domination bounds for connected graphs is a central
problem in domination theory and particularly challenging for regular graphs. The bound
(2) is infinitely attainable for k = 1 [21] and for k = 2 [20] (see [9]); however, to the best of
the author’s knowledge, no bound of the form ck|V (G)| for some k ≥ 3 and for connected
graphs G with δ(G) ≥ k and |V (G)| ≥ r is known to be infinitely attainable. It is also
not known if the integer part of the KS bound is infinitely attainable; however, it is at
least nearly so, as shown in [16, 17, 18, 19].

The next two sections are dedicated to the proofs of Theorems 1, 2, and 6. In
Section 5, we pose several problems and conjectures arising from Theorems 2 and 6, or
concerning the associated values defined above and related ones, and we provide some
partial answers.

3 Proof of Theorem 1
In this section, we prove Theorem 1.

Proof of Theorem 1. We first prove the bound. Let n = |V (G)| and k = ∆(G).
If n = 1, then λ(G) = n = |S(G)|. We now consider n > 1 and proceed by induction on
n.

If k = 0, then S(G) = V (G), and hence λ(G) = |S(G)|. Suppose k ≥ 1.
Suppose λ(G) = 1. If S(G) 6= ∅, then λ(G) ≤ |S(G)|. By the definition of T (G),

|T (G)| ≥ 2 if T (G) 6= ∅. Since M(G) = S(G) ∪ T (G), T (G) 6= ∅ if S(G) = ∅. Thus, if
S(G) = ∅, then |T (G)| ≥ 2, and hence we have λ(G) = 1 ≤ 1

2
|T (G)| ≤ k

k+1
|T (G)|.

Now suppose λ(G) > 1. Then, for each v ∈ V (G), we have

∆(G− v) = k, (4)

and hence
M(G− v) ⊆M(G) = M(G− v) ∪ (NG[v] ∩M(G)). (5)
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Thus, if v ∈ V (G) and D is a smallest set that dominates M(G − v) in G − v, then
D ∪ {v} is a set that dominates M(G) in G, and hence

λ(G) ≤ λ(G− v) + 1. (6)

Suppose S(G) 6= ∅. Let x ∈ S(G). Since ∆(G−x) = k, we have S(G−x) = S(G)\{x}
and T (G− x) = T (G). By the induction hypothesis,

λ(G− x) ≤ |S(G− x)|+ k

k + 1
|T (G− x)| = |S(G)| − 1 +

k

k + 1
|T (G)|.

By (6), the result follows.
Now suppose S(G) = ∅. Then, M(G) = T (G) 6= ∅. We have one of the following two

cases.

Case 1: There exist x, x′ ∈M(G) such that xx′ ∈ E(G). Let G′ = G− x. Let Y = {v ∈
NG(x) : dG(v) = k} and Z = NG(x)\Y . Thus, x′ ∈ Y and, by (4), (Y ∪ Z) ∩M(G′) = ∅.
For each y ∈ Y , let Ay = S(G′) ∩ N (2)

G′ (y). Let A =
⋃
y∈Y Ay. Let B = S(G′)\A. Since

M(G′) = S(G′)∪T (G′) = A∪B ∪T (G′), it follows by (5) that M(G) = A∪B ∪T (G′)∪
{x} ∪ Y , and hence

|M(G)| = |A|+ |B|+ |T (G′)|+ 1 + |Y |.

Consider any y ∈ Y . For any v ∈ V (G′), we have w ∈ N (2)
G′ [u] for every u,w ∈ NG′ [v],

and hence S(G′) does not have more than one element in NG′ [v]. We have

|Ay| =
∣∣∣∣S(G′) ∩

⋃
v∈NG′ (y)

(NG′ [v]\{y})
∣∣∣∣ ≤ ∑

v∈NG′ (y)

|S(G′) ∩NG′ [v]| ≤
∑

v∈NG′ (y)

1 = |NG′(y)|.

Thus, since x ∈ NG(y) and x /∈ NG′(y), we have |Ay| ≤ k−1. Therefore, |A| ≤ (k−1)|Y |.
Suppose B = ∅. Then, S(G′) = A. By (6) and the induction hypothesis,

λ(G) ≤ 1 + λ(G′) ≤ 1 + |A|+ k

k + 1
|T (G′)|

= 1 + |A|+ k

k + 1
(|M(G)| − |A| − 1− |Y |)

=
k|M(G)|+ |A|+ 1− k|Y |

k + 1
≤ k|M(G)|+ (k − 1)|Y |+ 1− k|Y |

k + 1

=
k|T (G)| − |Y |+ 1

k + 1
≤ k

k + 1
|T (G)|.

Now suppose B 6= ∅.
Consider any b ∈ B. By (4), dG′(b) = k, so b /∈ NG(x). Let Xb = N

(2)
G (b) ∩M(G).

Since b ∈ M(G′) ⊆ M(G) = T (G), Xb 6= ∅. Let b′ ∈ Xb. Since b ∈ S(G′), we have
b′ /∈ M(G′) or b′ /∈ N (2)

G′ (b). Suppose b′ ∈ N (2)
G′ (b). Then, b′ /∈ M(G′), and hence b′ ∈ Y .

This gives us b ∈ A, which contradicts b ∈ B. Thus, b′ /∈ N
(2)
G′ (b). Since b′ ∈ N

(2)
G (b),

it follows that b′ = x or x ∈ NG(b) (and b′ ∈ NG(x)\NG(b)). Since b /∈ NG(x), b′ = x.
We have therefore shown that Xb = {x} (as b′ is an arbitrary element of Xb). Since
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x = b′ ∈ N
(2)
G (b) and x /∈ NG(b), there exists some zb ∈ NG(b) such that zb ∈ NG(x).

Since b /∈ A, we have zb ∈ Z and NG(zb) ∩ Y = ∅.
Let ZB = {zb : b ∈ B}, NG(ZB) = NG[ZB]\ZB, and N

(2)
G (B) =

(⋃
b∈B N

(2)
G (b)

)
\B.

We have shown that N (2)
G (B) ∩M(G) = {x}, ZB ⊆ Z, and

NG(ZB) ∩ Y = ∅. (7)

Since ZB ⊆ Z, we have

ZB ∩M(G) = ∅ and ZB ∩M(G′) = ∅. (8)

Suppose v∗ ∈M(G) for some v∗ ∈ NG(ZB)\(B∪{x}). Then, v∗ /∈ Z (as dG(v∗) = k),
v∗ /∈ Y (by (7)), and hence v∗ /∈ NG(x). Thus, dG′(v∗) = k, and hence v∗ ∈M(G′). Since
v∗ ∈ NG(ZB), v∗ ∈ NG′(zb∗) for some b∗ ∈ B. We obtain v∗ ∈ N (2)

G′ (b∗) (v∗ 6= b∗ as v∗ /∈ B
by assumption), which contradicts b∗ ∈ S(G′).

Therefore,
NG(ZB) ∩M(G) = B ∪ {x}.

Suppose ∆(G − ZB) < k. Then, M(G) = B ∪ {x}. Recall that M(G) = T (G). We
have

λ(G) ≤ |ZB| ≤
|ZB|
|ZB|+ 1

(|B|+ 1) <
|Z ∪ Y |
|Z ∪ Y |+ 1

|T (G)| = k

k + 1
|T (G)|.

Now suppose ∆(G− ZB) = k. Then,

M(G) = M(G− ZB) ∪ (NG(ZB) ∩M(G)) = S(G− ZB) ∪ T (G− ZB) ∪B ∪ {x} (9)

and
M(G− ZB) ∩ (B ∪ {x}) = ∅. (10)

Subcase 1.1: S(G− ZB) = ∅. Let D be a smallest subset of V (G− ZB) that dominates
M(G − ZB) in G − ZB. By the induction hypothesis, |D| ≤ k

k+1
|T (G − ZB)|. By (9),

D ∪ ZB dominates M(G) in G. Thus,

λ(G) ≤ |D|+ |ZB| ≤
k

k + 1
|T (G− ZB)|+ |ZB|

|ZB|+ 1
(|B|+ 1)

<
k

k + 1
|T (G− ZB)|+ |Z ∪ Y |

|Z ∪ Y |+ 1
(|B|+ 1) =

k

k + 1
(|T (G− ZB)|+ |B ∪ {x}|),

and hence λ(G) < k
k+1
|M(G)| by (9) and (10). Recall that M(G) = T (G). Thus,

λ(G) < k
k+1
|T (G)|.

Subcase 1.2: S(G−ZB) 6= ∅. Let u ∈ S(G−ZB). By (9), u ∈M(G). Since dG−ZB
(u) =

k = dG(u), we have u /∈ NG(ZB), so u /∈ B ∪ {x}.
Suppose u /∈ NG[x]. Then, u /∈ {x} ∪ Y ∪ Z. If we assume that u ∈ NG(y) for some

y ∈ Y , then, by (7), we obtain u, y ∈ T (G − ZB), which contradicts u ∈ S(G − ZB).
Thus, u /∈ NG[Y ]. Since u /∈ NG[x], dG′(u) = k. Thus, u ∈ S(G′) or u ∈ T (G′). Suppose
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u ∈ S(G′). Since u /∈ B, u ∈ A. Thus, u ∈ N (2)
G (y∗) for some y∗ ∈ Y . Since u /∈ NG[Y ],

we have uv′, v′y∗ ∈ E(G) for some v′ ∈ V (G)\{u, y∗}. By (7), y∗ /∈ NG(ZB), so v′ /∈ ZB.
Since u, y∗ /∈ NG[ZB], we obtain u ∈ N (2)

G−ZB
(y∗) and u, y∗ ∈ T (G−ZB), which contradicts

u ∈ S(G − ZB). Thus, u ∈ T (G′), and hence there exists some u′ ∈ V (G)\NG[x] such
that dG′(u′) = k and u′ ∈ N

(2)
G′ (u). Suppose NG(u′) ∩ ZB 6= ∅. Then, zb′ ∈ NG(u′)

for some b′ ∈ B. Since b′ ∈ S(G′) and u ∈ N
(2)
G′ (u′), u′ 6= b′. Since u′, b′ ∈ NG′(zb′),

we obtain u′ ∈ N
(2)
G′ (b′), which contradicts b′ ∈ S(G′). Thus, NG(u′) ∩ ZB = ∅. Since

u /∈ NG(ZB), NG(u) ∩ ZB = ∅. Since u′ ∈ N
(2)
G (u), we obtain u′ ∈ N

(2)
G−ZB

(u) and
dG−ZB

(u′) = k = dG−ZB
(u), contradicting u ∈ S(G− ZB).

Therefore, u ∈ NG[x]. Since u /∈ NG(ZB), u 6= x. Thus, since u ∈ NG(x) = Y ∪Z and
dG(u) = k, u ∈ Y . We have therefore shown that S(G − ZB) ⊆ Y (as u is an arbitrary
element of S(G − ZB)). Suppose |Y | ≥ 2. Let y∗ ∈ Y \{u}. By (7), y∗ ∈ M(G − ZB).
Since u, y∗ ∈ NG−ZB

(x), we obtain y∗ ∈ N (2)
G−ZB

(u), which contradicts u ∈ S(G − ZB).
Thus, |Y | = 1, and hence

Y = {u} = S(G− ZB). (11)

Let D be a smallest subset of V (G−ZB) that dominates M(G−ZB) in G−ZB. By
the induction hypothesis, |D| ≤ 1 + k

k+1
|T (G − ZB)|. By (9), D ∪ ZB dominates M(G)

in G. By (9) and (10), we have M(G) = {u} ∪ T (G−ZB)∪ (B ∪ {x}), and the sets {u},
T (G− ZB), and B ∪ {x} are pairwise disjoint. Thus, |M(G)| = |T (G− ZB)| + |B| + 2.
Recall that M(G) = T (G). We have

λ(G) ≤ |D|+ |ZB| ≤ 1 +
k

k + 1
|T (G− ZB)|+ |ZB|

≤ k

k + 1
|T (G− ZB)|+ |ZB|+ 1

|ZB|+ 2
(|B|+ 2)

≤ k

k + 1
|T (G− ZB)|+ |Z ∪ Y |

|Z ∪ Y |+ 1
(|B|+ 2)

=
k

k + 1
|T (G− ZB)|+ k

k + 1
(|B|+ 2) =

k

k + 1
|M(G)| = k

k + 1
|T (G)|.

Case 2: No two vertices in M(G) are neighbours in G, that is,

v /∈ NG(w) for every v, w ∈M(G). (12)

Let x ∈M(G). By (4), ∆(G− x) = k.
Suppose S(G − x) 6= ∅. Then, we can apply the argument in Case 1; in the present

case, Y = ∅ by (12), and hence B = S(G − x) 6= ∅. The strict inequalities for λ(G)
arising from |ZB| < |Z ∪ Y | in Case 1 now become non-strict (as Y is now empty). The
argument in Sub-case 1.2 shows us that Sub-case 1.2 now does not arise (that is, we do
not have S(G− ZB) 6= ∅), because (11) gives Y 6= ∅.

Now suppose S(G − x) = ∅. Since M(G) = T (G), there exists some x′ ∈ N
(2)
G (x)

such that x′ ∈ M(G). Thus, by (12), xu, ux′ ∈ E(G) for some u ∈ V (G)\M(G). Let
Yu = {v ∈ NG(u) : dG(v) = k} and Zu = NG(u)\Yu. Then, x, x′ ∈ Yu, so |Yu| ≥ 2. Let

10



G′ = G−u. By (4), ∆(G′) = k. For each y ∈ Yu, let Ay = S(G′)∩N (2)
G′ (y). As in Case 1,

|Ay| ≤ k − 1 for each y ∈ Yu.
Suppose S(G′) 6=

⋃
y∈Yu\{x}Ay. Then, there exists some v ∈ S(G′) such that

v /∈ Ay for each y ∈ Yu\{x}. (13)

Since dG′(v) = k, we have v /∈ NG[u] and v ∈ M(G). By (12), x /∈ NG(v), so v ∈
M(G − x). Since S(G − x) = ∅, v ∈ T (G − x). Thus, there exists some w ∈ N (2)

G−x(v)
such that w ∈ M(G − x). By (12), w /∈ NG−x(v), so vv′, v′w ∈ E(G − x) for some
v′ ∈ V (G − x)\{v, w}. Since v /∈ NG[u], v′ 6= u. Also, w 6= u as dG−x(w) = k = dG(w)

and dG(u) < k. Thus, vv′, v′w ∈ E(G′), and hence w ∈ N
(2)
G′ (v). Since v ∈ S(G′), we

consequently have w /∈ M(G′). Thus, since dG(w) = k, we have w ∈ NG(u), and hence
w ∈ Yu\{x}. Now v ∈ N (2)

G′ (w) as w ∈ N (2)
G′ (v). Thus, we have v ∈ Aw, which contradicts

(13).
Therefore, S(G′) =

⋃
y∈Yu\{x}Ay, and hence

|S(G′)| ≤
∑

y∈Yu\{x}

|Ay| ≤
∑

y∈Yu\{x}

(k − 1) = (k − 1)(|Yu| − 1).

Let s = |S(G′)|. Since ∆(G′) = k, we haveM(G) = M(G′)∪(M(G)∩NG[u]) = M(G′)∪Yu
and M(G′) ∩ Yu = ∅, so |M(G)| = |M(G′)|+ |Yu|. By the induction hypothesis,

λ(G′) ≤ s+
k

k + 1
(|M(G′)| − s) =

s+ k|M(G′)|
k + 1

=
s+ k(|M(G)| − |Yu|)

k + 1
=
s+ k(|T (G)| − |Yu|)

k + 1
,

and hence, by (6),

λ(G) ≤ 1 + λ(G′) ≤ k + 1 + s+ k(|T (G)| − |Yu|)
k + 1

=
k|T (G)| − k(|Yu| − 1) + s+ 1

k + 1

≤ k|T (G)| − k(|Yu| − 1) + (k − 1)(|Yu| − 1) + 1

k + 1
≤ k

k + 1
|T (G)|

as |Yu| ≥ 2.

We have proved the bound in the theorem. We now prove the second part of the
theorem. The case k ≤ 2 was settled in Section 2. Suppose k ≥ 3. If F is a graph
with |V (F )| = p + 1 and E(F ) = {vw : w ∈ V (F )\{v}} for some v ∈ V (F ), then
F is a p-star with center v. Loosely speaking, we join the non-center vertices of r k-
stars to the centers of rk (k − 1)-stars in a one-to-one way, and we add some edges
to the resulting graph so that we obtain a graph Ir,k that is connected and attains
the bound in the theorem. More precisely, let Jr,k be the union of pairwise vertex-
disjoint graphs F1, . . . , Fr, H1,1, . . . , H1,k, . . . , Hr,1, . . . , Hr,k, where F1, . . . , Fr are k-stars
and H1,1, . . . , H1,k, . . . , Hr,1, . . . , Hr,k are (k − 1)-stars. For each i ∈ [r], let ui,0 be the
center of Fi, let ui,1, . . . , ui,k be the members of V (Fi)\{ui,0}, let xi, x′i ∈ V (Hi,1) with
xi 6= x′i and dHi,1

(xi) = dHi,1
(x′i) = 1 (xi and x′i exist as k − 1 ≥ 2), and, for each
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j ∈ [k], let wi,j be the center of Hi,j. Let Ir,k be the graph with V (Ir,k) = V (Jr,k)
and E(Ir,k) = E(Jr,k) ∪ {ui,jwi,j : i ∈ [r], j ∈ [k]} ∪ {x′ixi+1 : i ∈ [r − 1]}. Suppose
G = Ir,k. Let U = {ui,0 : i ∈ [r]}, U ′ = (

⋃r
i=1 V (Fi)) \U , and W = {wi,j : i ∈ [r], j ∈ [k]}.

Clearly, ∆(G) = k, S(G) = ∅, T (G) = U ∪W (as k ≥ 3), and G is connected. Since
U ′ is a ∆-reducing set of G, λ(G) ≤ rk. Now, for every i ∈ [r] and j ∈ [k], each ∆-
reducing set of G contains at least one member of NG[wi,j] = V (Hi,j) ∪ {ui,j}. Thus,
λ(G) = rk = |S(G)|+ k

k+1
|T (G)|. 2

4 Proof of Theorem 2 and of Theorem 6
In this section, we prove Theorems 2 and 6.

Let mod∗ be the usual modulo operation with the exception that, for every a ≥ 1 and
b ≥ 0, ba mod∗ a is a instead of 0.

For 0 ≤ k < n such that kn is even (thus, n is even if k is odd), let Bn,k be the graph
defined by V (Bn,k) = [n] and

E(Bn,k) =


⋃n
i=1

{
{i, (i+ j) mod∗ n} : j ∈

[
k
2

]}
if k is even,{

{i, i+ n
2
} : i ∈

[
n
2

]}
∪
⋃n
i=1

{
{i, (i+ j) mod∗ n} : j ∈

[
k−1

2

]}
if k is odd.

Note that, for each i ∈ [n], NBn,k
(i) = {(i+ j) mod∗ n : j ∈ [k/2]} ∪ {(i− j) mod∗ n : j ∈

[k/2]} if k is even, and NBn,k
(i) = {(i+j) mod∗ n : j ∈ [(k−1)/2]}∪{(i−j) mod∗ n : j ∈

[(k − 1)/2]} ∪ {(i + n/2) mod∗ n} if k is odd. Thus, Bn,k is a k-regular n-vertex graph.
Also, Bn,k is connected if k ≥ 2.

If k is even and n ≥ 3, then Bn,k is the k
2
th power of the cycle Cn (the graph with vertex

set V (Cn) and where, for every two distinct vertices v and w, v and w are neighbours if
and only if the distance between them in Cn is at most k

2
). If k is odd and n ≥ 3, then

Bn,k is obtained by adding the edges {1, 1 + n
2
}, . . . , {n

2
, n} to the k−1

2
th power of Cn.

Construction 1 For any graph G and any even integer p > ∆(G)− δ(G), we construct
a ∆(G)-regular graph G⊗ p as follows. Let k = ∆(G) and ` = δ(G). We take the union
of p pairwise vertex-disjoint copies G1, . . . , Gp of G, and, for each vertex v of G with
dG(v) < k, we add the edges of a copy of Bp,k−dG(v) with vertex set {x : for some i ∈ [p],
x is the vertex of Gi corresponding to v}. More precisely, let v1, . . . , vn be the distinct
vertices of G, where dG(vi) ≤ dG(vi+1) for each i ∈ [n−1]. For each i ∈ [p], let vi,j = (i, vj)
for each j ∈ [n], and let Gi = ({vi,j : j ∈ [n]}, {vi,jvi,j′ : j, j′ ∈ [n], vjvj′ ∈ E(G)}). Thus,
G1, . . . , Gp are pairwise vertex-disjoint copies of G. Let m = min{j ∈ [n] : dG(vj) =
k}. For each j ∈ [m − 1], let Xj = {vi,j : i ∈ [p]} and kj = k − dG(vj). Since ` =
dG(v1) ≤ dG(vj), kj ≤ k − ` < p. Let Hj be the copy of Bp,kj with V (Hj) = Xj and
E(Hj) = {vi,jvi′,j : i, i′ ∈ [p], {i, i′} ∈ E(Bp,kj)}. We denote by G ⊗ p the graph with
vertex set

⋃p
i=1 V (Gi) and edge set

(⋃p
i=1 E(Gi)

)
∪
(⋃

j∈[m−1] E(Hj)
)
. We call G⊗ p the

(G, p)-regularization graph.

Lemma 1 If G is an n-vertex graph with maximum degree k and minimum degree `,
then, for any even integer p > k − `, G⊗ p is a k-regular pn-vertex graph and

λ(G) ≤ γ(G⊗ p)
p

.
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Proof. It is immediate that |V (G ⊗ p)| = pn. For i ∈ [p] and j ∈ [m − 1], we have
dG⊗p(vi,j) = dGi

(vi,j) + dHj
(vi,j) = dG(vj) + kj = k. For i ∈ [p] and j ∈ [n]\[m − 1], we

have dG⊗p(vi,j) = dGi
(vi,j) = dG(vj) = k. Thus, G⊗ p is k-regular.

Let D be a smallest dominating set of G ⊗ p. Then, for each v ∈ V (G ⊗ p), there
exists some wv ∈ D such that v ∈ NG⊗p[wv], and hence wv ∈ NG⊗p[v]. For each i ∈ [p],
let Di = D ∩ V (Gi). Then, D =

⋃p
i=1 Di and |D| =

∑p
i=1 |Di|. Thus, there exists some

r ∈ [p] such that |Dr| ≤ |D|/p (as otherwise we obtain
∑p

i=1 |Di| >
∑p

i=1 |D|/p = |D|, a
contradiction). Now, for i ∈ [p] and v ∈M(Gi), NG⊗p[v] = NGi

[v] (asM(Gi) = {vi,j : j ∈
[n]\[m − 1]}), so wv ∈ NGi

[v] and wv ∈ Di. Thus, for i ∈ [p], Di is a ∆-reducing set of
Gi. Since Gr is a copy of G, we have λ(G) = λ(Gr) ≤ |Dr| ≤ |D|/p = γ(G⊗ p)/p. 2

Lemma 2 If G is a connected graph, k = ∆(G), ` = δ(G), p > k − `, p is even, and
either ` ≤ k − 2, or ` = k − 1 and p = 2, then G⊗ p is connected.

Proof. Recall that dG(v1) ≤ · · · ≤ dG(vn), so dG(v1) = `. If ` ≤ k − 2, then k1 ≥ 2, so
H1 is connected. If ` = k − 1, then k1 = 1. Thus, if ` = k − 1 and p = 2, then H1 is
connected. Since each of G1, . . . , Gp is connected and contains a vertex of H1, it follows
that G⊗ p is connected. 2

Proof of Theorem 2. Since G is non-regular, ` ≤ k − 1. Let p > k − ` such that
p is even. By Lemma 1, G⊗ p is a k-regular pn-vertex graph and λ(G) ≤ γ(G⊗ p)/p.

Suppose that either ` ≤ k − 2, or ` = k − 1 and p = 2 (= 2
⌈
k−`+1

2

⌉
). By Lemma 2,

G ⊗ p is connected, so γ(G ⊗ p) ≤ γcr(pn, k). Thus, λ(G) ≤ γcr(pn, k)/p = f(pn, k)n.
This settles (i) and part of (ii).

Now suppose that ` = k − 1, p 6= 2, and
∑

v∈V (G) dG(v) 6= kn − 1. Let m′ =

m − 1. We have m′ ≥ 1 (as dG(v1) = ` = k − 1) and kn − 1 6=
∑

v∈V (G) dG(v) =∑m′

j=1 dG(vj) +
∑n

j=m′+1 dG(vj) = m′(k − 1) + (n −m′)k = kn −m′. Thus, m′ ≥ 2, and
hence dG(v1) = dG(v2) = k−1. Let R be the graph with vertex set V (G⊗p) and edge set
(E(G⊗ p)\(E(H1)∪E(H2)))∪{vi,1vi+1,2 : i ∈ [p− 1]}∪{vp,1v1,2}. Then, R is a k-regular
pn-vertex graph. Also, it is easy to see that, since G is connected, R is connected. Thus,
γ(R) ≤ γcr(pn, k). By the argument in the proof of Lemma 1, λ(G) ≤ γ(R)/p. Therefore,
we have λ(G) ≤ γcr(pn, k)/p = f(pn, k)n. This settles the remaining part of (ii). 2

Proof of Theorem 6. By Lemma 1, G⊗ p is a k-regular pn-vertex graph and λ(G) ≤
γ(G⊗ p)/p ≤ γr(pn, k)/p = g(pn, k)n. 2

5 Problems, conjectures, and further results
In this section, we pose a number of problems and conjectures motivated by Theorems 2
and 6. Many domination problems arise naturally. We also establish a few additional
results, mainly Theorem 8.

For 2 ≤ k < n, we define

λc(n, k) = max{λ(G) : G is a connected graph with V (G) = [n] and ∆(G) = k},

λ(n, k) = max{λ(G) : G is a graph with V (G) = [n] and ∆(G) = k}.

13



The graph ([n], {{1, i} : i ∈ [k + 1]\{1}} ∪ {{i − 1, i} : i ∈ [n]\[k + 1]}) is a connected
n-vertex graph with maximum degree k (so λc(n, k) exists).

Recall from Section 1 that, for 2 ≤ k < n, connected k-regular n-vertex graphs exist if
and only if kn is even. For convenience, if kn is odd, then we take γcr(n, k) = γr(n, k) = 0.

The following is our ultimate and most direct question regarding the values considered
here.

Problem 1 What is the value of (i) λc(n, k)? (ii) λ(n, k)? (iii) γcr(n, k)? (iv) γr(n, k)?

However, it is understood that each of (i)–(iv) is a difficult problem.
As mentioned in Section 1, we ask whether Theorem 2 (ii) still holds without the

degree sum condition, and we conjecture an affirmative answer.

Problem 2 Does the inequality λ(G) ≤ f(pn, k)n in Theorem 2 (ii) still hold when∑
v∈V (G) dG(v) = kn− 1?

Conjecture 1 If G is a connected n-vertex graph, k = ∆(G) ≥ 2, ` = δ(G), and∑
v∈V (G) dG(v) = kn− 1, then λ(G) ≤ f(pn, k)n for any even integer p > k − `.

We note the following about Conjecture 1. A graph G with ∆(G) = k is k-regular if and
only if

∑
v∈V (G) dG(v) = kn. Thus, the graph in Conjecture 1 is closest to being k-regular

(in terms of the degree sum). Indeed, let G be a non-regular n-vertex graph with ∆(G) =
k. Then, dG(u) ≤ k−1 for some u ∈ V (G), so

∑
v∈V (G) dG(v) ≤ k−1+(n−1)k = kn−1.

Moreover,
∑

v∈V (G) dG(v) = kn− 1 (as in Conjecture 1) if and only if dG(u) = k − 1 and
dG(v) = k for each v ∈ V (G)\{u}. Since

∑
v∈V (G) dG(v) = 2|E(G)| (by the handshaking

lemma), if
∑

v∈V (G) dG(v) = kn− 1, then k and n are odd.

Problem 3 (i) For each of Theorem 2 (i), Theorem 2 (ii), and Theorem 6, for which
integers k is the bound in the theorem infinitely attainable with k fixed?

(ii) For each of Theorem 2 (ii) and Theorem 6, for which pairs (k, p) is the bound in the
theorem infinitely attainable with k and p fixed?

Remark 1 (iv) and Remark 2 (ii) answer Problem 3 (i) for k = 2; they give us that, for
k = 2, Theorem 2 (i) is infinitely attainable, Theorem 2 (ii) is infinitely attainable for
any fixed even p > 0, and Theorem 6 is infinitely attainable for p = 2. By Remark 2 (iii),
Theorem 6 is infinitely attainable for k = 3 and any fixed even p > 0.

Problem 4 What is the smallest integer q ≥ n such that

(i) λc(n, k) ≤ γcr(q, k)?

(ii) λc(n, k) ≤ f(q, k)n?

(iii) λ(n, k) ≤ γr(q, k)?

(iv) λ(n, k) ≤ g(q, k)n?

Conjecture 2 For 2 ≤ k < n, λc(n, k) = γcr(n, k) or λc(n, k) ≤ γcr(n+ 1, k).
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Conjecture 3 For 1 ≤ k < n, λ(n, k) = γr(n, k) or λ(n, k) ≤ γr(n+ 1, k).

Next, we instead ask for an integer q∗ ≥ n that gives the closest bound.

Problem 5 For each of the four parts below, determine an integer q∗ ≥ n for which the
part holds:

(i) λc(n, k) ≤ γcr(q
∗, k) = min{γcr(q, k) : q ≥ n, λc(n, k) ≤ γcr(q, k)}.

(ii) λc(n, k) ≤ f(q∗, k)n = min{f(q, k)n : q ≥ n, λc(n, k) ≤ f(q, k)n}.

(iii) λ(n, k) ≤ γr(q
∗, k) = min{γr(q, k) : q ≥ n, λ(n, k) ≤ γr(q, k)}.

(iv) λ(n, k) ≤ g(q∗, k)n = min{g(q, k)n : q ≥ n, λ(n, k) ≤ g(q, k)n}.

For each of the parts (i)–(iv) of Problem 4, we also ask if the integer q is a solution for
the corresponding part in Problem 5.

We have f(n, k) ≤ g(n, k). For which values of n and k is f(n, k) = g(n, k)? This
question is equivalent to the following.

Problem 6 For which values of n and k is γcr(n, k) = γr(n, k)?

We conjecture that {n ∈ N : γcr(n, k) = γr(n, k) 6= 0} is a finite set.

Conjecture 4 For k ≥ 2, there are finitely many integers n for which γcr(n, k) =
γr(n, k) 6= 0.

Proposition 1 Conjecture 4 is true if k = 2 or k = 3.

Proof. Consider k = 2 and n ≥ 18. Let t = bn−3
4
c. Then, t ≥ n−6

4
. Let G1, . . . , Gt, Gt+1

be pairwise vertex-disjoint graphs, where G1, . . . , Gt are copies of C4, and Gt+1 is a copy
of Cn−4t. Let G be the union of G1, . . . , Gt, Gt+1. Since G is a 2-regular n-vertex graph,
γr(n, 2) ≥ γ(G) ≥ 2t+ 1 ≥ n−6

2
+ 1 ≥ n

3
+ 1 > dn

3
e = γ(Cn) = γcr(n, 2) (as every 2-regular

graph is a cycle).
Now consider k = 3 and any even n ≥ 176. Let t = bn−4

8
c. Then, t ≥ n−11

8
. Let

G1, . . . , Gt, Gt+1 be pairwise vertex-disjoint graphs, where G1, . . . , Gt are copies of the
graph C ′8 in Section 2, and Gt+1 is a copy of Bn−8t,3 (n − 8t is even as n is even). Let
G be the union of G1, . . . , Gt, Gt+1. Since G is a 3-regular n-vertex graph, γr(n, 3) ≥
λ(G) ≥ 3t+1 ≥ 3(n−11)

8
+1 > 5

14
n ≥ γcr(n, 3) by the KS bound mentioned in Section 2. 2

With the notation in Section 2, we have λc
′(n, k) = λc(n,k)

n
and λ′(n, k) = λ(n,k)

n
.

Problem 7 Given k, how does each of the following functions behave as n increases? (i)
λc(n, k), (ii) λ(n, k), (iii) γcr(n, k), (iv) γr(n, k), (v) λc

′(n, k), (vi) λ′(n, k), (vii) f(n, k),
(viii) g(n, k).
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We have the following answers. By Theorem 4, the values λc(n, k), λ(n, k), γcr(n, k), and
γr(n, k) are bounded above by the bound in the theorem (recall that γ(G) = λ(G) if G
is regular) for k ≥ 3, and by n

2
for k = 2. As explained below, these values are bounded

below by n
k+1

if kn is even, and λc(n, k) and λ(n, k) are bounded below by n−1
k+1

if kn is
odd (recall that γcr(n, k) = γr(n, k) = 0 if kn is odd); thus, the values grow to infinity as
n grows. For (i) and (ii) (of Problem 7), we have a more precise answer. For any k ≥ 2,
λc(n, k) and λ(n, k) are increasing functions of n. This is given by parts (i) and (ii) of
our next result.

Theorem 8 For 2 ≤ k < n,

(i) λc(n+ 1, k) ≥ λc(n, k),

(ii) λ(n+ 1, k) ≥ λ(n, k),

(iii) λc(n+ k + 1, k) ≥ λc(n, k) + 1,

(iv) λ(n+ k + 1, k) ≥ λ(n, k) + 1.

Moreover, if kn is even, then

(v) γcr(n+ k + 1, k) ≥ γcr(n, k) + 1,

(vi) γr(n+ k + 1, k) ≥ γr(n, k) + 1.

In order to prove Theorem 8 (iii)–(vi), we establish the following.

Lemma 3 If G is an n-vertex graph with ∆(G) = k ≥ 2, G′ is a copy of Kk+1 with
V (G) ∩ V (G′) = ∅, vw ∈ E(G), v′w′ ∈ E(G′), and

H = (V (G) ∪ V (G′), ((E(G) ∪ E(G′))\{vw, v′w′}) ∪ {vv′, ww′}),

then H is an (n+ k + 1)-vertex graph with ∆(H) = k and

λ(H) = λ(G) + 1.

Moreover, H is k-regular if G is k-regular, and H is connected if G is connected.

Proof. Since V (G)∩V (G′) = ∅, |V (H)| = |V (G)|+|V (G′)| = n+k+1. We have dH(v) =
dG(v), dH(w) = dG(w), dH(v′) = dG′(v

′), and dH(w′) = dG′(w
′). Thus, ∆(H) = ∆(G),

and if G is k-regular, then H is k-regular. Clearly, H is connected if G is connected. It
remains to show that λ(H) = λ(G)+1, which is equivalent to λ(G)+1 ≤ λ(H) ≤ λ(G)+1.
We have V (G′) ⊆M(H) and, since k + 1 ≥ 3, V (G′)\{v′, w′} 6= ∅.

Let X be a smallest ∆-reducing set of G. If v ∈ X, then X ∪ {w′} is a ∆-reducing
set of H. If w ∈ X, then X ∪ {v′} is a ∆-reducing set of H. If v, w /∈ X, then, for any
y ∈ V (G′)\{v′, w′}, X ∪{y} is a ∆-reducing set of H. Thus, λ(H) ≤ |X|+ 1 = λ(G) + 1.

Let D be a smallest ∆-reducing set of H. Let DG = D∩V (G) and DG′ = D∩V (G′).
Then, λ(H) = |D| = |DG|+|DG′| and, since ∅ 6= V (G′)\{v′, w′} ⊆M(H), DG′ 6= ∅. IfDG

is a ∆-reducing set of G, then λ(G) ≤ |DG|, so λ(H) ≥ λ(G)+1. Suppose that DG is not
a ∆-reducing set of G. Then, D∩{v, w} = ∅, x ∈ D for some x ∈ {v′, w′}, and DG∪{v} is
a ∆-reducing set of G. Since D∩{v, w} = ∅, v′w′ /∈ E(H), and D dominates {v′, w′}\{x}
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in H, we have DG′\{x} 6= ∅. Therefore, λ(H) ≥ |DG|+ 2 = |DG∪{v}|+ 1 ≥ λ(G) + 1. 2

Proof of Theorem 8. Let G be an arbitrary n-vertex graph with ∆(G) = k. Let
x ∈ N such that x /∈ V (G), and let v, w ∈ V (G) such that vw ∈ E(G). Let H =
(V (G) ∪ {x}, (E(G)\{vw}) ∪ {vx, xw}). Then, H is an (n + 1)-vertex graph with
∆(H) = k. Clearly, H is connected if G is connected. Let D be a smallest ∆-reducing
set of H. If x /∈ D, then D is a ∆-reducing set of G. If x ∈ D, then (D\{x}) ∪ {v} is a
∆-reducing set of G. Thus, λ(G) ≤ |D| = λ(H). By taking G with λ(G) = λ(n, k), we
obtain λ(n+1, k) ≥ λ(n, k), and, by Lemma 3, we also obtain λ(n+k+1, k) ≥ λ(n, k)+1.
By taking a connected graph G with λ(G) = λc(n, k), we obtain λc(n+ 1, k) ≥ λc(n, k),
and, by Lemma 3, we also obtain λc(n+k+1, k) ≥ λc(n, k)+1. Suppose that kn is even.
By taking a k-regular graphG with γ(G) = γr(n, k), we obtain γr(n+k+1, k) ≥ γr(n, k)+1
from Lemma 3 (again recall that γ(G) = λ(G) if G is regular). By taking a connected
k-regular graph G with γ(G) = γcr(n, k), we obtain γcr(n+ k + 1, k) ≥ γcr(n, k) + 1 from
Lemma 3. 2

We now prove the statement above regarding the lower bounds for the values in
Problem 7 (i)–(iv). As observed in [1], for any graph G,

λ(G) ≥ |M(G)|
∆(G) + 1

. (14)

Let 2 ≤ k < n. Suppose that kn is even. Since Bn,k is k-regular, we have M(Bn,k) =
V (Bn,k) = [n], so λ(Bn,k) ≥ n

k+1
by (14). Now λ(Bn,k) ≤ γcr(n, k) as Bn,k is connected.

Also, we clearly have γcr(n, k) ≤ γr(n, k) and γcr(n, k) ≤ λc(n, k) ≤ λ(n, k). Therefore,
n
k+1

is a lower bound for each of γcr(n, k), γr(n, k), λc(n, k), and λ(n, k). Now suppose
that kn is odd. Then, k and n are odd. Thus, n − 1 is even, and, since 2 ≤ k < n, we
actually have 3 ≤ k ≤ n − 2. Let G be the graph with V (G) = [n] = V (Bn−1,k) ∪ {n}
and E(G) = (E(Bn−1, k)\{{n − 1, 1}}) ∪ {{n − 1, n}, {n, 1}}. Since ∆(G) = k and
M(G) = [n − 1], λ(G) ≥ n−1

k+1
by (14). Since G is connected, λ(G) ≤ λc(n, k). Thus, we

have n−1
k+1
≤ λc(n, k) ≤ λ(n, k).

In view of Theorem 8 (and Problem 7), we ask if, by fixing k and excluding the cases
where kn is odd, we also have that γcr(n, k) and γr(n, k) are increasing functions of n.
More precisely, we pose the following problem.

Problem 8 (i) Is γcr(n+ 1, k) ≥ γcr(n, k) for 2 ≤ k < n with k even?

(ii) Is γr(n+ 1, k) ≥ γr(n, k) for 2 ≤ k < n with k even?

(iii) Is γcr(n+ 2, k) ≥ γcr(n, k) for 2 ≤ k < n with kn even?

(iv) Is γr(n+ 2, k) ≥ γr(n, k) for 2 ≤ k < n with kn even?

For each of (i)–(iv), we conjecture an affirmative answer.
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